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CONCLUSION

Unlike hybrid modes, the pure TM and TE modes
have a minimum value of d/A, for which they are bound
to the rod. For values of d/Ay smaller than this, the
modes are neither bound to the rod nor will propagate
independently of it, hence are effectively cut off. This
shows on the graphs as a nonzero slope for the curves
at A/Ao=1, the respective values of d/\ being given by
(6) for the TM modes and by

Dominant Mode
[d/M] = 2.405[1/7r] [KT — 1]——1/2 (7
C.0.

for the TE modes.
The asymptotic value of /A, for large d/\, is given
by (5) for both TM and TE modes and is the value of
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A/Ao that the modes would have in a dielectric medium
of infinite extent.

It can be seen that any value of A\/Ay between 1 and
[Kz]7Y? may be selected by proper choice of d/Ay; how-
ever, as d/A; becomes smaller, more of the energy of the
wave is propagated outside the rod. In general, an in-
crease in dielectric constant has the opposite effect of
binding the wave more tightly to the rod. Since the
microwave index of refraction may be varied from 1 to
[Kr]¥2, which is generally higher for a given dielectric
than the respective optical index of refraction, one can
almost always effect a match of velocities in an optical-
microwave type experiment.
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Further Formulas for Calculating
Approximate Values of the Zeros of
Certain Combinations of Bessel
Functions*

INTRODUCTION

In a recent letter Gunston?! has presented
a wonderfully simple approximate formula
for the smallest z zero of the Bessel function
equation

Tp(2)Nplks) ~ Jp(kz)Np(z) = 0 1)

where J, and N, are, respectively, the Bessel
functions of the first and second kinds of
real-order p. This communication is in-
tended to draw attention to the existence of
similar approximate formulas for both the
larger z zeros of (1) and the roots of the
equally-important companion equation

T BN (kz) — T, (B5)N,/(z) =0 (2)

’

where ’ indicates differentiation.

BACKGROUND

In the usual physical cases of interest the
parameter p is an arbitrary real number
while % is generally positive. It is known that
under these conditions the zeros of (1) as a
function of z are all real, snnple (see Gray
and Mathews?) and infinite in number, and
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these results can be extended to the s zeros of
(2) (see Cochran3), Furthermore, since both
(1) and (2) are unaffected by replacing either
zby —zor p by —p, attention need only be
addressed to the case of positive values.
As pointed out by Klinet and Waldron?
the solutions of equations (1) and (2) ap-
proach those of the equations J,(kz) =0 and
Jp'(kz) =0, respectively, with increasing % or
p The latter author even indicates the re-
gions among his tabulated values in which
this approximation may be reasonably made.
Moreover, the familiar asymptotic expres-
sions of McMahont suffice for the calcula-
tion of the roots of both (1) and (2) when-
ever the quantity 8=Sx/(k—1) is appre-
ciable, where S is the number of the root
when arranged in order of magnitude. As
cogently discussed by Waldron,5 it is con-
venient to index the roots of the primed
equation (2) beginning with S=0 rather
than with S=1 as one does for the solutions
of (1). This not only obviates the difficulty
wherein, under the usual numbering scheme,
the McMahon expression with g=.S7/
(B—1) gives the asymptotic expansion for
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the (S+1)st root of (2), but it also serves to
set apart the fundamentally different group
of roots corresponding to .S=0. When p=0
these special zeros of (2) do not occur; on
the other hand, for >0 a representation in
terms of powers of (k—1)/+/4k has been
derived for them by Buchholz.”

ForMuLAS

Let z and 2" denote roots of the unprimed
equation (1) and of the primed equation (2),
respectively, and let & be a positive constant.
If 6=(k—1)z or =(k—1)2', the author has
recently developed asymptotic expressions
for the Sth zeros of (1) and (2) in the follow-
ing form:

gmsg _ $é 8
2o 48t — (Sm)z 2
a(s,S)
b(s,.5)
The functions a(s, S) and b(3, .S), whose
precise nature need not concern us here, are
independent of p. Solving for 2,5 or #'p.s

using the first two terms of the expansion
yields

+ % b+ow. ®

Zp,8 ] (Sm)? 4p2
gz'p,s§ - (k—1)2+(k—f—1)2 @
and

&po = 2p/(k + 1).

7 H. Buchholz, “Relhenentwmklungen fur eine
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Math. Mech., vol. 29, pp. 356-367; November, 1949,
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Fig. t—Accuracy graph of the approximate
formulas for zp,s with s =1.
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Fig. 2—Accuracy graph of the approximate
formula for zp,s’ with =0, 1, and 3.

Setting S=1in (4) gives Gunston's result.
It is known, though, that for given p, the
roots of (1) and (2) do not coincide so it
would be helpful if our simple formulas ex-
hibited this difference. Using the full right-
hand side of (3) above does yield dissimilar,
but rather complex, results. By retaining
only the most essential terms, however, these
expressions can be approximately reduced to

VA
TV G- Gt
YOl SO e
IV =T k12
(S=1)2:3’>
R R
PTG+ 1)[ 6(k -+ 1) :I )

For large S or small (¢—1) these formulas
give rise to the leading terms in the asymp-
totic expansions of McMahon and Buch-
holz, and consequently the expressions of
(5) become increasingly more accurate in
these regions.

Following Gunston, accuracy graphs
may be roughly constructed for the above
simple approximate formulas. For values of
(k, p) lying below the curves of Fig. 1 the
formulas of (4) and (5) for 3,,1 are within +1
per cent of the exact value. Fig. 2 shows sim-
ilar curves for z’p.0, 5'p.1, and 25,5 from (5).
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It is unfortunate that known existing
data (see Waldron® and Fletcher, et al.8) does
not permit us toreadily compare carefully the
approximate with the exact roots for a wider
range of values of (k, p). In particular, the
precise general accuracy of the expressions
for z,,5 of either (4) or (5) is somewhat un-
certain for moderate p and k, say 1<p<3
and 2>3, and the situation is therefore not
quite as depicted in Fig. 1 of Gunston.!?
Nevertheless, it is hoped that the two figures
presented here do serve to illustrate the gen-
eral regions of applicability of the formulas
of (4) and (5) as either reasonable approxi-
mate values of the roots in question, or as
initial approximations in computational
schemes for the zeros of these important
combinations of Bessel functions.
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Transmission Line Measurement
of Narrow Linewidth Ferromagnetic
Samples™

Measurement of ferromagnetic resonance
linewidths over a range of microwave fre-
quencies is facilitated by the use of a non-
resonant waveguide system. The loading ef-
fect encountered in such a transmission line
svstem, however, becomes significant when
the linewidth is less than a few tens of
oersteds. The effect of transmission line

(6‘11 - 822*) -+ (311 -+ 322*)5
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THREE-PORT JUNCTION

e PORT NO 2

7
£pORT NO. 3

Fig. 1—Schematic view of the test section.

surrounds the test sample. The treatment of
this problem is simplified by including only
one mode of propagation at port No. 3. This
propagating mode is closely related to the
radiation field associated with the resonant
mode of the sample.

It is necessary to consider the properties
of the test section in terms of the signals
observable at ports Nos. 1 and 2 alone. The
only dissipative element in this system is the
load at port No. 3. The reflection coefficient
of the load at port No. 3 is written in im-
pedance form for convenience, (1 —5)/(1+3).
If first order perturbation theory can be
used to describe a magnetic sample in the
waveguide the impedance is proportional to
the susceptibility.

In order to describe this three-port
junction in matrix formalism, it is sufficient
to identify the ports with elements of a
column matrix, the amplitude and phase at
each port being represented by a correspond-
ing element. The scattered waves, also de-
scribed by a column matrix, are related to
the incident waves by a square matrix.
Terminating the third port of the network
by a reflective load reduces the order of
system. The resultant two-port junction is
described by a 2X2 matrix T, given in (1),
which is not, in general, a unitary matrix.

(512 -+ s20*) + (512 = s:®)z

T = (1 — ss) + (1 5 ss2)3
(s21 + $12%) + ($21 — $12™)%

(1 —s0)+ Q10+ 533)%

. 1
(s22 — s11%) + (520 + su®)s W

1- s33) + 1+ $33)2

loading was avoided by the use of an auto-
matic compensation network.

An idealized model of the experimental
system is illustrated in Fig. 1. Scattering-
matrix theory is applied to the junction that
is inside the balloon-like simply connected
region. The test sample is placed topo-
logically outside the junction by means of a
connecting tube. If the radius of the con-
necting tube is small enough, the tube itself
will not be significant and we have a three-
port function which fits the usual simplify-
ing assumptions of scattering matrix theory.
Ports Nos. 1 and 2 are terminals of wave-
guide in which only the dominant mode is
propagating. Port No. 3 is the surface which
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a- s39) -+ 1+ S33)%

The impedance at the third port appears in
the reduced matrix T in the numerator of
each term and in the common denominator
of the entire matrix. A resonant condition is
described by this matrix if the denominator
vanishes. This, however, represents decou-
pling of thethird portfromall other portsand
is of no interest in this study. The complex
conjugate form arises because .S is a unitary
matrix; the form written here is for +1 value
of the determinant of .S.

Tt is useful to note at this point that: 1)
Since signal is applied at one port only, the
transmitted and reflected signals are the
most easily observed quantities. 2) Since
the sample has a narrow linewidth, the con-
dition =0 can be used for a convenient
reference, the measurement being made far
from resonance.



