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CONCLUSION

Unlike hybrid modes, the pure TM and TE modes

have a minimum value of d/iO for which they are bound

to the rod. For values of d/hO smaller than this, the

modes are neither bound to the rod nor will propagate

independently of it, hence are effectively cut off. This

shows on the graphs as a nonzero slope for the curves

at X/Xi2 = 1, the respective values of d/kO being given by

(6) for the TM modes and by

Dominant Mode

[d/Ao] ~ ~ = 2.405 [1/r][K~ – I]-*D (7)

. .

for the TE modes.

The asymptotic value of A/Ao for large d/Xa is given

by (5) for both TM and TE modes and is the value of

A/Xo that the modes would have in a dielectric medium

of infinite extent.

It can be seen that any value of A/Ao between 1 and

[K.]-u’ maybe selected by proper choice of d/AO; how-

ever, as d/X. becomes smaller, more of the energy of the

wave is propagated outside the rod. In general, an in-

crease in dielectric constant has the opposite effect of

binding the wave more tightly to the rod. Since the

microwave index of refraction may be varied from 1 to

[K~]’2, which is generally higher for a given dielectric

than the respective optical index of refraction, one can

almost always effect a match of velocities in an optical-

microwave type experiment.
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Further Formulas for Calculating

Approximate Values of the Zeros of

Certain Combinations of Bessel

Functions*

INTRODUCTION

In a recent letter Gunstonl has presented

a wonderfully simple approximate formula
for the smallest z zero of the Bessel function

equation

~zSz)Np(kz) – -r,(.kZ)~.(Z) = O (1)

where Jp and NP are, respectively, the Bessel
functions of the first and second kinds of
real-order p. This communication is in-
tended to draw attention to the existence of
similar approximate formulas for both the
larger z zeros of (1) and the roots of the

equally-important companion equation

JAN; – “ran/ = o (2)

where ‘ indicates differentiation.

BACKGROUND

In the usual physical cases of interest the
parameter p is an arbitrary real number

while k is generally positive. It is known that
under these conditions the zeros of (1) as a

function of z are all real, simple (see Grav
and Mathewsz) and infinite in number, aud
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these results can be extended to the c zeros of

(2) (see Cochran3). Furthermore, since both
(1) and (2) are unaffected by replacing either

z by –z or P by –P, attention need only be
addressed to the case of positive values.

As pointed out by Klinel and WaldronE

the solutions of equations (1) and (2) ap-
proach those of the equations Jz(kz) = O and
Jp’(kz) = O, respectively, with increasing k or
p. The latter author even indicates the re-

gions among his tabulated values in which
this approximation may be reasonably made.
Moreover, the familiar asymptotic expres-

sions of McMahonb suffice for the calcula-

tion of the roots of both (1) and (2) when-

ever the quantity 6 = Sw/(k — 1) is appre-
ciable, where S is the number of the root

when arranged in order of magnitude. As

cogently discussed by Waldron,6 it is con-
venient to index the roots of the primed

equation (2) beginning with S= O rather
than with S= 1 as one does for the solutions
of (l). This not only obviates the difficulty
wherein, under the usual numbering scheme,

the McMahon expression with B = Srr/
(k – 1 ) gives the asymptotic expansion for
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the (S+l)st root of (2), but it also serves to

set apart the fundamentally different group
of roots corresponding to S= O. When P = O

these special zeros of (2) do not occur; on

the other hand, for p> O a representation in

terms of powers of (k – 1) /<4k has been

derived for them by Buchholz.7

FORMULAS

Let z and z’ denote roots of the unprimed

equation (1) and of the primed equation (2),
respectively, and let ti be a positive constant.
If ~= (k–l)z or 3= (k–l)s’, the author has
recently developed asymptotic expressions

for the Sth zeros of (1) and (2) in the follow-
ing form:

1 a(~, S)

+;{6(8,s) 1
+ O(p-’) . (3)

The functions a (8, .S’) and J5(6, S), whose
precise nature need not concern us here, are
independent of p. Solving for ZP,S or Z’P,,S

using the first two terms of the expansion
yields

lz.1=/ ‘ST)’, 4,2(k– 1)2 (k+l)z ‘4)

and

Z’z,, = Z)/(k + 1).

? H. Buchholz, “Reihenentwicklungen fur eine
Determmante mit Zybnderfunktlone n,” Z, ATwew.
Math. Mwh., vol. 29, PD. 356–367; November, 1949.
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Fig. l—Accuracy graph of the approximate
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Fig. 2—Accuracy graph of the approximate
formula forzp,,’withs=o, l,and3.

Setting S= 1 in (4) gives Gauston’s result.
It is known, though, that for given p, the

roots of (1) and (2) do not coincide so it
would be helpful if our simple formulas ex-
hibited this difference. Using the full right-

hand side of (3) above does yield dissimilar,

but rather complex, results. By retaining

only the most essential terms, however, these
expressions can be approximately reduced to

d (Sk) 2 4*2 _ 1

ZD,S =

(k – 1)’ + (k.+ 1)’

d

(.%) 2 4p2 + 3
Z’P,,* $x ——— ——

(k–l)’+(h+l)’

(S = 1,2, 3,...)

2P

[

l+(k– 1)’
~’mo = ——

(k + 1) 16(k + 1)’
(5)

For large .S or small (k – 1) these formulas
give rise to the leading terms in the asymp-
totic expansions of hIcMahon and Buch-

holz, and consequently the expressions of
(5) become increasingly more accurate in
these regions.

Following Gunston, accuracy graphs
may be roughly constructed for the above
simple approximate formulas. For values of

(k, P) lying below the curves of Fig. 1 the
formulas of (4) and (5) fOr Z,. I am withill + 1

per cent of the exact value. Fig. 2 shows sim-
ilar curves for Z’P.O, :’=,,, and z’P, s from (5).

It is unfortunate that known existing
data (see Waldron6 and Fletcher, et al.s) does
not permit us to readily compare carefully the

approximate with the exact roots for a wider
range of values of (k, p). Iu particular, the
precise geueral accuracy of the expressions

for ZI,,S of either (4) or (5) is somewhat un-

certain for moderate p and ?z, say 1 <j <3

and k >3, and the situation is therefore not

quite as depicted in Fig. 1 of Guuston.l,g

Nevertheless, it is hoped that the two figures
presented here do serve to illustrate the gen-

eral regious of applicability of the formulas
of (4) aud (5) as either reasonable approxi-
mate values of the roots in question, or as
initial approximations in computational
schemes for the zeros of these important

combinations of Bessel functions.
J. A. COCHRAN

Bell Telephone Labs., Inc.

Whippany, N. J.
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s For instance, the inaccuracy of Gunston’s for-
muPafor p=5/2, k=3,4, or 5 is of the order of 2or 3
per cent rather than less than 1.5 per cent as his figure
indicates.

Transmission Line Measurement

of Narrow Linewidth Ferromagnetic

Samples*

ilIeasuremeut of ferromagnetic resonance

linewidths over a range of microwave fre-
quencies is facilitated by the use of a non-
resonant wavegnide system. The loading ef-
fect encountered in such a transmission line
system, however, becomes significant when

the liuewidth is less than a few tens of

oersteds. The effect of transmission line

THREE-PORT JUNCTION

Fig. l—Schematic view of the test section.

surrounds the test sample. ‘l’he treatment of
this problem is simplified by including only
one mode of propagation at port No. 3. This

propagating mode is closel:~ related to the
radiation field associated wkh the resonaut

mode of the sample.

It is necessary to consider the properties

of the test sectiou in terms of the signals

observable at ports Nos. 1 and 2 alone. The

only dissipative element in this system is the
load at port No. 3. The reflection coefficient
of the load at port No. 3 is written in im-
pedance form for convenience, (1 –z) /(1 +z).

If first order perturbation theory can be
used to describe a magnetic sample in the

waveguide the impedance is proportional to

the susceptibility.

In order to describ: this three-port
junction in matrix formalism, it is sufficient

to identify the ports with elements of a

column matrix, the amplitude and phase at

each port being represent d by a correspond-
ing element. The scattered waves, also de-

scribed by a column matrix, are related to
the incident waves by a square matrix.
Terminating the third pm-t of the network
by a reflective load reduces the order of

system. The resultant two-port junction is
described by a 2 X 2 matrix T, given in (1),
which is not, in general, a, unitary matrix.

($11 – J-22*) + (s11 + $22*)2 (s12 + S21*) + (s12 – S21*)::

(1– $,,)+ (1+ S33)Z (1 – s,,) + (1 + S3JZ
I

I“ = (s,, + W*) + (s,1 – S,,*)Z (m – W*) + bz! + ~11*) ‘ “
——————. ——.. __ ——...

(1 – J%) + (1 + S33)Z (1 – s:,) + (1 + S33)Z

(1)

loading was avoided by the use of an auto-

matic compensation network.
An idealized model of the experimental

system is illustrated in Fig. 1. Scattering-

matrix theory is applied to the junction that
is inside the balloon-like simply connected
region. The test sample is placed topo-

logically outside the junction by means of a

connecting tube. If the radius of the con-
necting tube is small enough, the tube itself
will not be significant and we have a three-
port function which fits the usual simplify-

ing assumptions of scattering matrix theory.
Ports Nos. 1 and 2 are terminals of wave-
guide iu which only the dominant mode is
propagating. Pm-t No. 3 is the surface which

* Received July 1, 1963.

The impedance at the third port appears in
the reduced matrix T in the numerator of

each term and in the common denominator
of the entire matrix. A resonant condition is
described by this matrix if the denominator
vanishes. This, however, represents decou-

pling of the third port from all other ports and
is of no interest in this study. The complex
conjugate form arises because S is a unitary
matrix; the form written here is for + 1 value
of the determinant of .S.

It is useful to note at this point that: 1)
Since signal is applied at one port only, the
transmitted and reflectec~ signals are the
most easily observed quzmtities. 2) Since
the sample has a narrow li newidth, the con-
dition z = O can be used for a convenient
reference, the measurement being made far
from resonance.


